156 research outputs found

    Single-cell genomic variation induced by mutational processes in cancer

    Full text link
    How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells

    Cytomapper: an R/bioconductor package for visualisation of highly multiplexed imaging data

    Full text link
    SUMMARY: Highly multiplexed imaging technologies enable spatial profiling of dozens of biomarkers in situ. Here we describe cytomapper, a computational tool written in R, that enables visualisation of pixel- and cell-level information obtained by multiplexed imaging. To illustrate its utility, we analysed 100 images obtained by imaging mass cytometry from a cohort of type 1 diabetes patients. In addition, cytomapper includes a Shiny application that allows hierarchical gating of cells based on marker expression and visualisation of selected cells in corresponding images. AVAILABILITY AND IMPLEMENTATION: The cytomapper package can be installed via https://www.bioconductor.org/packages/release/bioc/html/cytomapper.html. Code for analysis and further instructions can be found at https://github.com/BodenmillerGroup/cytomapper_publication. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Clonal transcriptomics identifies mechanisms of chemoresistance and empowers rational design of combination therapies

    Full text link
    Tumour heterogeneity is thought to be a major barrier to successful cancer treatment due to the presence of drug resistant clonal lineages. However, identifying the characteristics of such lineages that underpin resistance to therapy has remained challenging. Here, we utilise clonal transcriptomics with WILD-seq; Wholistic Interrogation of Lineage Dynamics by sequencing, in mouse models of triple-negative breast cancer (TNBC) to understand response and resistance to therapy, including BET bromodomain inhibition and taxane-based chemotherapy. These analyses revealed oxidative stress protection by NRF2 as a major mechanism of taxane resistance and led to the discovery that our tumour models are collaterally sensitive to asparagine deprivation therapy using the clinical stage drug L-asparaginase after frontline treatment with docetaxel. In summary, clonal transcriptomics with WILD-seq identifies mechanisms of resistance to chemotherapy that are also operative in patients and pin points asparagine bioavailability as a druggable vulnerability of taxane-resistant lineages

    Proteomics studies confirm the presence of alternative protein isoforms on a large scale

    Get PDF
    Stably expressed alternatively-spliced protein isoforms are produced on a genome-wide scale in Drosophila

    scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data

    Full text link
    With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019)

    Multiplex imaging of breast cancer lymph node metastases identifies prognostic single-cell populations independent of clinical classifiers

    Full text link
    Although breast cancer mortality is largely caused by metastasis, clinical decisions are based on analysis of the primary tumor and on lymph node involvement but not on the phenotype of disseminated cells. Here, we use multiplex imaging mass cytometry to compare single-cell phenotypes of primary breast tumors and matched lymph node metastases in 205 patients. We observe extensive phenotypic variability between primary and metastatic sites and that disseminated cell phenotypes frequently deviate from the clinical disease subtype. We identify single-cell phenotypes and spatial organizations of disseminated tumor cells that are associated with patient survival and a weaker survival association for high-risk phenotypes in the primary tumor. We show that p53 and GATA3 in lymph node metastases provide prognostic information beyond clinical classifiers and can be measured with standard methods. Molecular characterization of disseminated tumor cells is an untapped source of clinically applicable prognostic information for breast cancer

    An R-based reproducible and user-friendly preprocessing pipeline for CyTOF data

    Full text link
    Mass cytometry (CyTOF) has become a method of choice for in-depth characterization of tissue heterogeneity in health and disease, and is currently implemented in multiple clinical trials, where higher quality standards must be met. Currently, preprocessing of raw files is commonly performed in independent standalone tools, which makes it difficult to reproduce. Here, we present an R pipeline based on an updated version of CATALYST that covers all preprocessing steps required for downstream mass cytometry analysis in a fully reproducible way. This new version of CATALYST is based on Bioconductor’s SingleCellExperiment class and fully unit tested. The R-based pipeline includes file concatenation, bead-based normalization, single-cell deconvolution, spillover compensation and live cell gating after debris and doublet removal. Importantly, this pipeline also includes different quality checks to assess machine sensitivity and staining performance while allowing also for batch correction. This pipeline is based on open source R packages and can be easily be adapted to different study designs. It therefore has the potential to significantly facilitate the work of CyTOF users while increasing the quality and reproducibility of data generated with this technology

    A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer

    Full text link
    Immune checkpoint therapy in breast cancer remains restricted to triple negative patients, and long-term clinical benefit is rare. The primary aim of immune checkpoint blockade is to prevent or reverse exhausted T cell states, but T cell exhaustion in breast tumors is not well understood. Here, we use single-cell transcriptomics combined with imaging mass cytometry to systematically study immune environments of human breast tumors that either do or do not contain exhausted T cells, with a focus on luminal subtypes. We find that the presence of a PD-1high exhaustion-like T cell phenotype is associated with an inflammatory immune environment with a characteristic cytotoxic profile, increased myeloid cell activation, evidence for elevated immunomodulatory, chemotactic, and cytokine signaling, and accumulation of natural killer T cells. Tumors harboring exhausted-like T cells show increased expression of MHC-I on tumor cells and of CXCL13 on T cells, as well as altered spatial organization with more immature rather than mature tertiary lymphoid structures. Our data reveal fundamental differences between immune environments with and without exhausted T cells within luminal breast cancer, and show that expression of PD-1 and CXCL13 on T cells, and MHC-I - but not PD-L1 - on tumor cells are strong distinguishing features between these environments

    Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment

    Full text link
    A holistic understanding of tissue and organ structure and function requires the detection of molecular constituents in their original three-dimensional (3D) context. Imaging mass cytometry (IMC) enables simultaneous detection of up to 40 antigens and transcripts using metal-tagged antibodies but has so far been restricted to two-dimensional imaging. Here we report the development of 3D IMC for multiplexed 3D tissue analysis at single-cell resolution and demonstrate the utility of the technology by analysis of human breast cancer samples. The resulting 3D models reveal cellular and microenvironmental heterogeneity and cell-level tissue organization not detectable in two dimensions. 3D IMC will prove powerful in the study of phenomena occurring in 3D space such as tumor cell invasion and is expected to provide invaluable insights into cellular microenvironments and tissue architecture

    The single-cell pathology landscape of breast cancer.

    Get PDF
    Single-cell analyses have revealed extensive heterogeneity between and within human tumours1-4, but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions. Here we use imaging mass cytometry5 to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. Spatially resolved, single-cell analysis identified the phenotypes of tumour and stromal single cells, their organization and their heterogeneity, and enabled the cellular architecture of breast cancer tissue to be characterized on the basis of cellular composition and tissue organization. Our analysis reveals multicellular features of the tumour microenvironment and novel subgroups of breast cancer that are associated with distinct clinical outcomes. Thus, spatially resolved, single-cell analysis can characterize intratumour phenotypic heterogeneity in a disease-relevant manner, with the potential to inform patient-specific diagnosis
    • …
    corecore